# Modeling the sodium conductance

## Selina Baeza-Loya

May 30, 2021

#### Introduction

To clear up confusion and mollify any misunderstandings, I have typed up the modeling of sodium conductance using Hodgkin-Huxley (HH) formulations, as I understand them. I've included some inserts from the original HH papers (specifically, the 1952d paper, A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE), as well as some other works that I've referenced over the years.

## Sodium conductance modeled as a set of first order equations

To model a traditional, TTX-sensitive transient sodium current, as was recorded in the giant squid axon by Hodgkin and Huxley, we begin with:

$$g_{Na} = \bar{g}_{Na}m^3h$$

where  $g_{Na}$  is the sodium conductance,  $\bar{g}_{Na}$  is the fixed sodium conductance density of open Na channels, m is the activation rate and h is the inactivation rate.

Hodgkin and Huxley described the activation and inactivation with the following gating equations:

$$m' = \alpha_m (1 - m) - \beta_m m$$
$$h' = \alpha_h (1 - h) - \beta_h h$$

where  $\alpha$  and  $\beta$  are rate constants. See page 512, Hodgkin and Huxley 1952d.

To characterize voltage-gated channels, equations are fit to voltage clamp data. Under voltage clamp conditions, where the voltage can be held constant, the nonlinear gating equations can be reduced to:

$$m = m_{\infty} - (m_{\infty} - m_0) \exp(-\frac{t}{\tau_m}); h = h_{\infty} - (h_{\infty} - h_0) \exp(-\frac{t}{\tau_h})$$

Where  $m_{\infty}$  is the steady-state activation function,  $\tau_m$  is the time constant of activation,  $h_{\infty}$  is the steadystate inactivation function, and  $\tau_h$  is the time constant of inactivation. Steady state voltage-dependent time constants of activation and inactivation functions are as follows:

$$au_m=rac{1}{lpha_m+eta_m}; au_h=rac{1}{lpha_h+eta_h}$$

Ok, so given these steady-state equations, and the following two assumptions: At rest, the sodium conductance is small relative to the conductance during a large depolarization, (1) which therefore allows us (them) to neglect  $m_{\infty}$  if the depolarization is greater than 30 mV. Also, inactivation is "very nearly complete" is the V < -30 mV so that (2)  $h_{\infty}$  may also be neglected.

We can further reduce the equation for sodium conductance to:

$$g_{Na} = \bar{g}_{Na} \left[1 - \exp\left(-\frac{t}{\tau_m}\right)\right]^3 \exp\left(-\frac{t}{\tau_h}\right)$$

Then  $\bar{g}_{Na}$ ,  $\tau_m$  and  $\tau_h$  values were calculated by fitting that equation to the following experimental data:



Using these, they were able to calculate  $\alpha$  and  $\beta$  using:  $\alpha_m = m_{\infty}/\tau_m$  and  $\beta_m = (1 - m_{\infty})/\tau_m$  as shown below:

| TABLE 2. Analysis of curves in Fig. 6 |             |                                           |              |                 |                                  |                                 |                          |              |               |                                   |
|---------------------------------------|-------------|-------------------------------------------|--------------|-----------------|----------------------------------|---------------------------------|--------------------------|--------------|---------------|-----------------------------------|
| Curve                                 | V<br>(mV)   | $g'_{\rm Na}$<br>(m.mho/cm <sup>2</sup> ) | $m_{\infty}$ | $\tau_m$ (msec) | $\alpha_m$ (msec <sup>-1</sup> ) | $\beta_m$ (msec <sup>-1</sup> ) | τ <sub>λ</sub><br>(msec) | $h_{\infty}$ | $(msec^{-1})$ | $\beta_{h}$ (msec <sup>-1</sup> ) |
|                                       | $(-\infty)$ | (42.9)                                    | (1.00)       |                 |                                  |                                 |                          |              | -             |                                   |
| A                                     | - 109       | 40-3                                      | 0.980        | 0.140           | 7.0                              | (0.14)                          | 0.67                     | (0)          | (0)           | 1.20                              |
| B                                     | - 100       | 42.6                                      | 0.997        | 0.160           | 6.2                              | (0.02)                          | 0.67                     | (0)          | (0)           | 1.20                              |
| $\boldsymbol{C}$                      | - 88        | 46.8                                      | 1.029        | 0.200           | 5.15                             | (-0.14)                         | 0.67                     | (0)          | (0)           | 1.50                              |
| D                                     | - 76        | 39.5                                      | 0.975        | 0.189           | 5.15                             | 0.13                            | 0.84                     | (0)          | (0)           | 1.19                              |
| E                                     | - 63        | 38.2                                      | 0.963        | 0.252           | 3.82                             | 0.15                            | 0.84                     | (O)          | (0)           | 1.19                              |
| F                                     | - 51        | 30.7                                      | 0.895        | 0.318           | 2.82                             | 0.33                            | 1.06                     | (0)          | (0)           | 0.94                              |
| G                                     | - 38        | 20.0                                      | 0.778        | 0.382           | 2.03                             | 0.58                            | 1.27                     | (0)          | (0)           | 0.79                              |
| H                                     | - 32        | 15.3                                      | 0.709        | 0.520           | 1.36                             | 0.56                            | 1.33                     | (0)          | (0)           | 0.75                              |
| I                                     | - 26        | 7.90                                      | 0.569        | 0.600           | 0.95                             | 0.72                            | (1.50)                   | (0.029)      | (0.02)        | (0.65)                            |
| J                                     | - 19        | 1.44                                      | 0.323        | 0.400           | 0.81                             | 1.69                            | (2.30)                   | (0.069)      | (0.03)        | (0.40)                            |
| K                                     | - 10        | 0.13                                      | 0.145        | 0.220           | 0.66                             | 3.9                             | (5.52)                   | (0.263)      | (0.05)        | (0.13)                            |
| L                                     | - 6         | 0.046                                     | 0.103        | 0.200           | 0.51                             | 4.5                             | (6.73)                   | (0.388)      | (0.06)        | (0.09)                            |
| —                                     | (0)         | (0.0033)                                  | (0.042)      | —               | —                                |                                 | _                        | (0-608)      | _             | _                                 |

Values enclosed in brackets were not plotted in Figs. 7-10 either because they were too small to be reliable or because they were not independent measurements obtained in this experiment.

 $\alpha_h$  and  $\beta_h$  were derived in a similar manner, by plotting against data and solved using:  $\alpha_h = h_\infty / \tau_h$  and  $\beta_h = (1 - h_\infty) / \tau_h$ .

Modeling sodium currents in vestibular ganglion neurons

We used a different but functionally equivalent formulation:

$$I_{Na} = \bar{g}_{Na}(m^3h)(V - E_{Na})$$

where

$$m' = rac{m_\infty - m}{ au_m}; \ h' = rac{h_\infty - h}{ au_h}$$

and

$$m_{\infty} = \left[1 + \exp\left(-\frac{V + V^{1/2}}{k}\right)\right]^{-1}; \quad h_{\infty} = \left[1 + \exp\left(-\frac{V + V^{1/2}}{k}\right)\right]^{-1}$$

 $m_{\infty}$  is still the steady-state activation function,  $\tau_m$  the time constant of activation,  $h_{\infty}$  the steady-state inactivation function, and  $\tau_h$  the time constant of inactivation. Steady Conductance density ( $\bar{g}$ ), reversal potential ( $E_{Na}$ ), half activation ( $V^{1/2}$ ), and slope factor (k) were based on experimentally derived values from this our study.



Our steady state equations are therefore:

$$m_{\infty} = \left[1 + \exp\left(-\frac{V+40}{8}\right)\right]^{-1}; \quad h_{\infty} = \left[1 + \exp\left(-\frac{V+65}{9}\right)\right]^{-1}$$

Our time constants of activation and inactivation were derived by fitting the rising and decay phase of sodium currents to determine the voltage-dependence of time constants. The time constant of activation ( $\tau_m$ ) was assessed by fitting the rising phase of a sodium current with the equation:

$$y = y_0 - A(1 - e^{-\frac{x}{\tau}})^3$$

The power (3) was used since it best fit the very fast rise of the sodium current. The time constant of inactivation ( $\tau_h$ ) was assessed by fitting the decaying phase of a sodium current with:

$$y = y_0 + A(e^{-\frac{x}{\tau}})$$



Using a similar methodology, Rothman and Manis (2003c) use the following equations for  $\tau_m$  and  $\tau_h$ , which were subsequently used in Hight and Kalluri 2016, and Ventura and Kalluri, 2019:

$$\tau_m = 10 \left\{ 5 \exp\left[\frac{V+60}{18}\right] + 36 \exp\left[-\frac{V+60}{25}\right] \right\}^{-1} + 0.04$$
  
$$\tau_h = 100 \left\{ 7 \exp\left[\frac{V+60}{11}\right] + 10 \exp\left[-\frac{V+60}{25}\right] \right\}^{-1} + 0.6$$

where presumably

b

9

3

₀ ∟ -50

-40

-30

-20

Vm (mV)

-10

0

10

**t**h (ms)

$$\alpha_m = 5 \exp\left[\frac{V+60}{18}\right]; \beta_m = 36 \exp\left[-\frac{V+60}{25}\right]$$
$$\alpha_h = 7 \exp\left[\frac{V+60}{11}\right]; \beta_m = 10 \exp\left[-\frac{V+60}{25}\right]$$

These were putatively derived from data in Costa (1996):



Fig. 4. Time-constant of activation ( $\tau_m$ ). A: illustration of the measurements ( $i_i$  and  $i_c$ ) to calculate the time-constant of activation ( $\tau_m$ , Eq. 3). Two exponentials were fit to the falling phase of the signal and extrapolated to the time of the start of the pulse;  $i_i$  and  $i_c$  as in Eq. (3). B: voltage-dependence of activation  $\tau_m$  (mcan values) in older (P > 25, filled circles) and immature cells (P<sub>3-5</sub>, open circles); error bars are  $\pm$ S.E.M. Corresponding representative activation ( $m_m$ ) curves obtained with the mean values in Table 1 ( $V_{1/2}$  and  $V_s$ ) were superimposed (solid line: P > 25; doted line: P<sub>3-5</sub>).



## Citations:

**Costa PF**. The kinetic parameters of sodium currents in maturing acutely isolated rat hippocampal CA1 neurones. *Developmental Brain Research* 91: 29–40, 1996.

**Hight AE**, **Kalluri R**. A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons. *Journal of Neurophysiology* 116: 503–521, 2016.

**Hodgkin AL**, **Huxley AF**. A quantitative description of membrane current and its application to conduction and excitation in nerve. *The Journal of Physiology* 117: 500–544, 1952.

**Rothman JS**, **Manis PB**. The Roles Potassium Currents Play in Regulating the Electrical Activity of Ventral Cochlear Nucleus Neurons. *Journal of Neurophysiology* 89: 3097–3113, 2003.

**Ventura CM**, **Kalluri R**. Enhanced Activation of HCN Channels Reduces Excitability and Spike-Timing Regularity in Maturing Vestibular Afferent Neurons. *J Neurosci* 39: 2860–2876, 2019.